Toward “Real-Time” Analysis in Neutron Science

Ryan Adamson, Jose Borreguero, Blake Caldwell, Stuart Campbell, Rich Crompton, Olivier Delaire, David Dillow, Mathieu Doucet, Dave Giles, Monojoy Goswami, Melissa Graves-Brook, Gayle Greene, Matthew Gyurgyik, Mark Hagen, Steven Hartman, Matthew Hermanson, Steve Hicks, Kay Kasemir, Jason Kincl, Scott Koch, James Kohl, Chris Layton, Vickie Lynch, Ross Miller, Dude Neergaard, Andre Parizzi, Daniel Pelfrey, Pete Peterson, Thomas Proffen, Shelly Ren, Michael Reuter, Charles Roberts, Andrei Savici, Galen Shipman, Sergey Shpanskiy, Dale Stansberry, Bobby Sumpter, Madhan Sundaram, John Quigley, Carol Tang, Kevin Thach, Tara Thompson, Bogdan Vacaliuc, Sudharshan Vazhkudai, Pedro Vicente, Karen White, Barry Winn, Russell Taylor, Marie Yao
From Ion Source to Neutron Detectors

Ion source produces negatively charged hydrogen ions formed into a pulsed beam at 2.5 MeV
Linear accelerator accelerates the H- beam to 2.5 MeV to 1 GeV
H- pulse from linac is wrapped into a ring through a stripper foil, removing the electrons to produce protons H+. Protons are accumulated in the ring and then kicked out at 60 Hz
These pulsed, high-energy protons are directed to a mercury target, when a proton hits the target, 20 to 30 neutrons are released, moderated and directed to individual beam lines
Neutron detectors surrounding a sample environment detect collisions of neutrons with the detector. The TOF and angle of incidence of the neutron is calculated.
Many different types of instruments

- **Inelastic Spectroscopy** – ARCS, CNCS, SEQUOIA, HYSPEC
 - Resolves the change in kinetic energy when neutron/sample collisions are inelastic
 - Commonly used in condensed matter research to study atomic motion, magnetic and crystal field excitations

- **Diffraction (Elastic)** – POWGEN, NOMAD, VULCAN
 - Resolves the structure of a material
 - Use to study nanoscale structure and magnetic structure

- **Small-angle neutron scattering (Elastic)** – EQ-SANS, USANS
 - Uses small scattering angles to investigate the structure of materials at the mesoscopic scale
 - Use to study proteins, DNA, and other biological molecules; polymers, crystalline structures, etc.
SNS Data Life Cycle

Acquisition
- Neutron events
- Events from sample environment
- Other triggers

Reduction
- Corrected reduced data (histograms, S(Q,E), ..)
- Merging, reconstruction of data
- Instrument/technique dependent
- Need for ‘real’ time reduction

Analysis
- Multi dimensional fitting
- Advanced visualization
- Comparison to simulation / feedback
- Field dependent, large variety of approaches

Simulation Modeling
- Multitude of techniques (DFT, MD, ..)
- Advanced simulation of experiments
- ‘Refinement’ using experimental data
- Multiple experiments / probes

User Facility
- Variety of experiments, topics, methods and ‘computer literacy’ of users are significant challenge.
Example: NOMAD Diffractometer

Raw Data: up to 10^{12} events per second

Translated Data: Gigabytes to Terabytes

Reduced Data: e.g. Powder Diffraction Pattern

Analysis & Simulation

Analysis: PDF, MD simulation, etc.

Feedback guiding changes to the experiment setup

Data captured and stored on multiple systems at the beamline

After completion of a “run” data is aggregated on a single system, translation begins

Once data is aggregated reduction begins using a workstation

Analysis and Simulation using mid-scale compute
Improving Productivity = Changing the Workflow

Neutron Facility
- Acquire Data
- Reduce Data
- Change Configuration = New Proposal

Home Institution
- Data Analysis
- Publication

Timescales of Months or longer

Neutron Facility
- Acquire Data
- Reduce Data
- Change Configuration

Home Institution
- Data Analysis
- Publication

Live View

Seconds / Minutes / Hours
Challenges

• Advanced data infrastructure and the staff for operations
• Data capture and aggregation from a diverse sensors
• Data transformation/reduction in near real-time for live view
• Coupling of advanced analysis/simulation
• Cataloging of experiment results to include provenance
• Remote access to data and compute resources
• Long-term stewardship and public access
A Knowledge Discovery Architecture for Neutron Science

- Simulation
- Analysis
- Data transformation
- Data capture
- Data Catalogs and Provenance
- Workflow Automation
- Software-as-a-Service
- Infrastructure (Compute & Storage)
A Knowledge Discovery Architecture for Neutron Science

Simulation
Analysis
Data transformation
Data capture
Data Catalogs and Provenance
Workflow Automation
Software-as-a-Service
Infrastructure (Compute & Storage)
Data Capture and Transformation

- Accelerating Data Acquisition, Reduction, and Analysis at SNS
 - We stream data (neutron and SE) from the DAS to a publish subscribe system
 - **Stream Management Service (SMS)**
 - We modify MANTID (data reduction) to read from the data stream live from SMS
 - **Streaming Reduction Service (SRS)**
 - We re-configure the data translation (file creation) to read the data stream from SMS and create the files while the run is taking place… end of run = close file [file appears “instantly”]
 - **Streaming Translation Service (STS)**
 - Files are created on an HPC infrastructure for subsequent parallel analysis and data reduction
A Knowledge Discovery Architecture for Neutron Science

Simulation

Analysis

Data transformation

Data capture

Data Catalogs and Provenance

Workflow Automation

Software-as-a-Service

Infrastructure (Compute & Storage)
The CAMM will integrate materials modeling/simulation (MD/DFT) directly into the chain for neutron scattering data analysis, **offline** and **online** (in near real time).

- Developing workflows for refinement, integration of MD codes, **neutron scattering corrections**...

- The CAMM is working with ORNL’s Materials Science and Technology Division to study coarse grained MD simulations of polymers PEO-AA (CNMS), **ab-initio** MD simulations for ferroelectrics/thermoelectrics.

Focus on **width** of dispersions:
- measured line widths need corrections for instrument resolution effects.
- will support development of reliable line width predictions.

A Knowledge Discovery Architecture for Neutron Science
Compute and Data Infrastructure

- Flexible: tailored software stacks coupled with workload appropriate compute
- Elastic: meet point-in-time storage and compute requirements
- Ability to provision persistent services for data capture services, portals, databases, etc.

Scalable I/O Backplane

- Parallel File System
 - Multiple Petabytes
- Shared home
 - Hundreds of Terabytes
- Blob Storage (Archive & Sharing)
 - Multiple Petabytes
- Compute Cluster
 - Traditional MPI, Hadoop, Parallel R, Visit, etc.
 - Subset are NVRAM and/or Accelerator enabled
- Large Memory SMP Systems
 - Non-MPP workloads with large memory requirements
 - Subset are NVRAM enabled
- Commodity Servers
 - Web Servers
 - Workflow Engines
 - Other Persistent Services

ESNet

- 100 Gbps
- Flexible: tailored software stacks coupled with workload appropriate compute
- Elastic: meet point-in-time storage and compute requirements
- Ability to provision persistent services for data capture services, portals, databases, etc.
A Knowledge Discovery Architecture for Neutron Science

- Simulation
- Analysis
- Data transformation
- Data capture
- Data Catalogs and Provenance
- Workflow Automation
- Software-as-a-Service
- Infrastructure (Compute & Storage)
Software-as-a-Service Platform

- A hybrid HPC cluster and software-as-a-service “cloud”
- Full HPC software stack and parallel file system environment
- Unlike traditional HPC, users are insulated from this environment
- Parallel reduction algorithms are configured and ready to run
 - Leverages Mantid in a “Framework” mode and runs this data parallel
- These reductions are available for execution from anywhere via MOAB web-services
- Users continue to interact with Mantid for reduction as they always have on their workstation or via thin-client
 - Mantid executes reduction remotely through MOAB web-services
- Other software services will be required - modeling and simulation
A Knowledge Discovery Architecture for Neutron Science

Simulation
Analysis
Data transformation
Data capture
Data Catalogs and Provenance
Workflow Automation
Software-as-a-Service
Infrastructure (Compute & Storage)
Workflow Automation

- The Workflow Manager handles data cataloging, automated reduction, and archiving of datasets post acquisition
- Built on Apache ActiveMQ allowing loosely coupled architecture
 - Resilience through durable messages and clustered message brokers
 - Load balancing of tasks across resources through message queues
- Tasks within the workflow are handled by independent processes running on one or more systems
- Each task type maps to an ActiveMQ queue, to activate a task you simply send a message to that queue
- A director process manages the workflow sending messages to these queues
- Workflows are defined and stored within the director’s redundant MySQL system
A Knowledge Discovery Architecture for Neutron Science

Simulation
Analysis
Data transformation
Data capture

Data Catalogs and Provenance
Workflow Automation
Software-as-a-Service
Infrastructure (Compute & Storage)
Data Catalogs and Provenance

Neutron Data

Proposal Information

Simulation

Data Catalog

High-performance Scalable Storage

Access, Citation & Data reuse

Re-analysis & Derived data Products

PbTe calculation (DFT)

E (meV)

0 Γ q