
Richard Gerber
Deputy Group Lead
NERSC User Services

Introduction to
High
Performance
Parallel I/O

- 1 -

August 30, 2013

Some slides from Katie Antypas

Images from David Randall, Paola Cessi, John Bell, T Scheibe

I/O Needs Getting Bigger All the
Time

• I/O needs growing each
year in scientific
community

• I/O is a bottleneck for
many

• Data sizes growing with
system memory

• For large users I/O
parallelism is mandatory

• Titan has 10 PB of disk
and Blue Waters 22 PB!!!

Outline

• Storage Architectures
• File Systems
• I/O Strategies
• MPI I/O
• Parallel I/O Libraries

3

Images from David Randall, Paola Cessi, John Bell, T Scheibe

Why is Parallel I/O for science
applications difficult?

• Scientists think about
data in terms of how a
system is represented
in the code: as grid
cells, particles, …

• Ultimately, data is
stored on a physical
device

• Layers in between the
application and the
device are complex and
varied

• I/O interfaces are often
arcane and complicated

System I/O Architecture

• Should an application scientist/programmer
care about what the I/O system looks like?

– Yes! It would be nice not to have to, but performance
and perhaps functionality depend on it.

– You may be able to make simple changes to the code
or runtime environment that make a big difference.

– Inconvenient Truth: Scientists need to understand
their I/O in order to get good performance

This may be mitigated by using I/O libraries.

Storage Architectures

- 6 -

Simplified I/O Hierarchy

Storage Device

Parallel File System

Intermediate Layer

High Level IO Library

Application

May be
MPI IO

Storage Devices

• Usually we’ll be talking
about arrays of hard
disks

• FLASH “drives” are being
used as fast “disks,” but
are expensive
– “Burst buffers” coming

soon
• Magnetic tapes are

cheap, but slow and
probably don’t appear as
standard file systems

Some Definitions

• Capacity (in MB, GB, TB, PB)
– Depends on area available on storage device and the density data can

be written
• Transfer Rate (bandwidth) – MB/sec or GB/sec

– Rate at which a device reads or writes data
– Depends on many factors: network interfaces, disk speed, etc.
– Be careful with parallel BW numbers: aggregate? per what?

• Access Time (latency)
– Delay before the first byte is read

• Metadata
– A description of where and how a file or directory is stored on physical

media
– Is itself data that has to be read/written
– Excessive metadata access can limit performance

Latencies

10

FP
mul
t

FP
add

LD

ST
INT

Shif
t

M
em

or
y

In
te

rfa
ce

L2
 C

ac
he

L1
Data
Cache

L1 Instr.
Cache

IN
T

Re
gi

st
er

s
FP Re

gi
st

er
s

1 ns10 10
ns

FM
A

100
ns

100
ns

1,000,000
ns

1,000,000
ns

1,000 1,000
ns

Disk Storage

Node Interconnect

CPU

Bandwidths

• How fast can you stream data from your application
to/from disk?

• Once you pay the latency penalty, HPC system BWs are
large.

• ~ 10s to now 100s GB/sec
• To take advantage of this, read/write large chunks

(MBs) of data
• Serial bandwidths < 1 GB/sec

– Limited by interfaces and/or physical media
• You need parallelism to achieve high aggregate

bandwidth

File Buffering and Caching

• Buffering
– Used to improve performance

• File system collects full blocks of data before transferring data to disk
• For large writes, can transfer many blocks at once

• Caching
– File system retrieves an entire block of data, even if all data was not

requested, data remains in the cache

• Can happen in many places, compute node, I/O server, disk
• Not the same on all platforms
• Important to study your own application’s performance

rather than look at peak numbers

File Systems

13

Local vs. Global File Systems

• “On-board” (the old “local”)
– Directly attached to motherboard via some interface
– Few HPC systems have disks directly attached to a node

• “Local” in HPC: Access from one system
– Network attached PB+ file systems

• Via high-speed internal network (e.g. IB,Gemini, Airies)
• Direct from node via high-speed custom network (e.g.

IB,FibreChannel)
• Ethernet

– Contention among jobs on system
• “Global”: Access from multiple systems

– Networked file system
– Activity on other systems can impact performance
– Useful for avoiding data replication, movement among systems

Top Parallel File Systems Used in
HPC

GPFS

I/O I/O I/O I/O I/O I/O I/O I/O

Generic Parallel File System
Architecture

Compute
Nodes

Internal
Network

Storage
Hardware --
Disks

Parallel FS

I/O
Servers

External
Network

I/O Strategies

17

Application I/O

• All significant I/O performed by your job should
use the file system designed for HPC
applications.

• Home directories are not optimized for large I/O
performance.

• Consult your center’s documentation.

Home
Directory

Work / Scratch
Directory

Parallel I/O: A User Wish List

• Easy to program
• Get acceptable performance

– Users tell us that I/O should be on the order of 10% of
run time or less

• Have data files portable among systems
• Write data from many processors into a single file
• Read data from any number of tasks (i.e., you want

to see the logical data layout… not the physical
layout)

• Be able to easily use M tasks to read a data file
written using N tasks

July 19, 2008

High Level I/O Strategies

• Single task does all I/O
• Each task writes to its own file
• All tasks write to single shared file
• n<N tasks write to a single file
• n1<N tasks write to n2<N files

Serial I/O

0 1 2 3 4

File

tasks

• Each task sends its data to a master that writes the
data

• Advantages
Simple

• Disadvantages
Scales poorly
May not fit into memory on task 0
Bandwidth from 1 task is very limited

5

Parallel I/O Multi-file
Each Processors Writes Its Data to Separate File

tasks

Advantages
Easy to program

Can be fast
(up to a point)

0 1 2 3 4

File0 File1 File2 File3 File4

5

File5

Disadvantages
Many files can cause serious

performance problems
Hard for you to manage 10K, 100K or

1M files

Flash Center IO Nightmare…

• 32,000 processor run on LLNL BG/L
• Parallel IO libraries not yet available
• Every task wrote

– Checkpoint files: .7 TB, every 4 hours, 200 total
– Plot files: 20GB each, 700 files
– Particle files: 470 MB each, 1,400 files

• Used 154 TB total
• Created 74 million files!
• UNIX utility problems (e.g., mv, ls, cp)
• It took 2 years to sift though data, sew files

together

Parallel I/O Single-File
All Tasks to Single File

tasks 0 1 2 3 4

File

5

Advantages
Single file makes data manageable
No system problems with excessive

metadata

Disadvantages
Can be more difficult to program (use

libs)
Performance may be less

Hybrid Model I
Groups of Tasks Access Different Files

0 1 2 3 4

File

tasks 5

File

Advantages

Fewer files than 11

Better performance than
All1

Disadvantages
Algorithmically complex

MPI-IO

26

What is MPI-IO?

• Parallel I/O interface for MPI programs
• Allows access to shared files using a standard API

that is optimized and safe
• Key concepts:

– MPI communicators
• open()s and close()s are collective within communicator
• Only tasks in communicator can access

– Derived data types
• All operations (e.g. read()) have an associated MPI data type

– Collective I/O for optimizations

27

Basic MPI IO Routines

• MPI_File_open() – associate a file with a file handle.

• MPI_File_seek() – move the current file position to a given
location in the file.

• MPI_File_read() – read some fixed amount of data out of the
file beginning at the current file position.

• MPI_File_write() – write some fixed amount of data into the
file beginning at the current file position.

• MPI_File_sync() -- flush any caches associated with the file
handle.

• MPI_File_close() – close the file handle.

29

Independent and Collective I/O

• Independent I/O operations specify only what a single process will do
– Independent I/O calls obscure relationships between I/O on other processes

• Many applications have phases of computation and I/O
– During I/O phases, all processes read/write data

• Collective I/O is coordinated access to storage by a group of processes
– Collective I/O functions are called by all processes participating in I/O
– Allows I/O layers to know more about access as a whole, more opportunities for

optimization in lower software layers, better performance

P0 P1 P2 P3 P4 P5 P0 P1 P2 P3 P4 P5

Independent I/O Collective I/O

Slide from Rob Ross, Rob Latham at ANL

MPI-IO Summary

• Provides optimizations for typically low
performing I/O patterns (non-contiguous I/O
and small block I/O)

• You could use MPI-IO directly, but better to use
a high level I/O library

• MPI-IO works well in the middle of the I/O
stack, letting high-level library authors write to
the MPI-IO API

30

High Level Parallel I/O
Libraries

31

Common Storage Formats
• ASCII:

– Very slow
– Takes a lot of space!
– Inaccurate

• Binary
– Non-portable (eg. byte ordering and types sizes)
– Not future proof

• Self-Describing formats
– NetCDF/HDF4, HDF5, Parallel NetCDF

• Community File Formats
– FITS, HDF-EOS, SAF, PDB, Plot3D
– Modern Implementations built on top of HDF, NetCDF, or other self-

describing object-model API

Many users at this
level. We would like
to encourage you to
transition to a higher

IO library

What is a High Level Parallel I/O Library?

• An API which helps to express scientific simulation
data in a more natural way
– Multi-dimensional data, labels and tags, non-contiguous

data, typed data
• Typically sits on top of MPI-IO layer and can use

MPI-IO optimizations
• A library offers

– Portable formats - can write on one machine and read
from another

– Longevity - output will last and be accessible with library
tools and no need to remember version number of code

What about performance?

• Hand tuned I/O for a particular application and architecture
may perform better, but …

• … maybe not. A library can be optimized for a given
architecture by the library developers

• Performance is not just GB/s, but more importantly,
productivity

• If you use your own binary file format, it forces you to
understand layers below the application and preserve your
I/O routines if you want to read later

• Every time code is ported to a new machine or underlying
file system is changed or upgraded, you are required to make
changes to maintain performance

IO Library Overhead

Data from Hongzhang Shan

Very little, if any overhead from HDF5 for one file per
processor IO compared to Posix and MPI-IO

ADIOS

- 36 -

ADIOS provides a code API and external XML
descriptor file that lets you process data in different
ways by changing the XML file and rerunning your
code.

ADIOS can use different back-end file storage
formats (e.g. HDF5, netCDF)

Recommendations

• Do large I/O: write fewer big chunks of data (1MB+)
rather than small bursty I/O

• Do parallel I/O
– Serial I/O (single writer) can not take advantage of the

system’s parallel capabilities.

• Use a single, shared file instead of 1 file per writer,
esp. at high parallel concurrency

• Avoid excessive metadata activity (e.g., avoid
keeping millions of small files in a single directory)

• Use an I/O library API and write flexible, portable
programs

National Energy Research Scientific Computing
Center

- 38 -

